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Behavior of a system of single-domain ferromagnetic particles with easy-magnetization-axis-type magnetic 

anisotropy in a rotating fluid matrix is considered in a transverse magnetic field that is weak compared to 

the effective magnetic anisotropy field of a particle. The dynamics of a separate particle and orientational 

state of the system are considered with regard for Brownian rotational diffusion. It is found that a small 

deviation from the conventional rigid dipole model leads, at frequencies exceeding a certain critical value, 

to appearance of two attracting stationary states of the easiest magnetization axis that are situated in the 

plane perpendicular to the field and approach, with the growth of a particle, one or another direction of the 

matrix rotation axis. It is shown that this circumstance can radically change the behavior of a system of 

Brownian particles and, thus, magnetic and hydrodynamic properties of the ferrosuspension. 

Introduction. Stable colloidal suspensions of single-domain ferromagnetic particles (magnetic liquids) were 

synthesized to provide solutions to purely practical problems by using the possibilites afforded by the combination 

of fluidity and considerable magnetic susceptibility (whose values are four orders of magnitude higher than those 

of natural liquid magnetics) [1 ]. Further investigations of ferrosuspensions revealed a whole spectrum of basic 

physical, physicochemical, and hydrodynamic problems (see [2, 3 ]). The mutual effect of the mechanical motion 
of the medium and orientational motion of the particle ensemble in the magnetic field is one of these problems. 

The hydrodynamic aspect of the problem consists in the fact that the effect of internal orientational degrees 

of freedom leads to breakdown of the symmetry condition for electromagnetic and viscous stress tensors which is 

basically inherent in conventional fluids and radically modifies the suspension behavior. The back-action of the 

flow on the orientational state of the particle ensemble is mostly investigated as an accompanying factor to 

hydrodynamics. At frequencies low compared to the characteristic time of establishment of orientational equilibrium 

it permits a rather simple and universal description [4 ]. Investigation of the high-frequency behavior - even in the 

simplest case of spherical particles with uniaxial magnetic anisotropy - meets substantial difficulties connected 

with the nonlinear character of the particle dynamics and the magnetic hysteresis of its crystalline matrix [5, 6 ]. 

To date, a number of high-frequency internal rotational effects in magnetic colloids, including the intriguing 

phenomenon of negative viscosity, are investigated [7-9]. The description of the high-frequency dependence is 

substantially simplified for an ideal system of particles with magnetic dipoles rigidly frozen in the crystalline matrix. 

The rigid dipole model is most investigated and is most frequently used in particular problems [2, 8, 10-13 ]. Strictly 

speaking, the condition of a rigidly frozen dipole is equivalent to tending to infinity the effective anisotropy field 

H a of a particle which fixes the direction e of the magnetic moment along the direction n of the easiest magnetization 
of the particle. In practice, depending on the material, H a has a rather moderate value of the order of 102-103 Oe. 

The practical condition of applicability of the rigid dipole model to an actual system is given in the form of a more 
relaxed requirement of localization of the magnetic moment in the vicinity of one of the directions of the easiest 

magnetization axis [2, 3 ]. It is evident that the wide applications of the rigid dipole model to quasirigid systems 

are based on the intuitive concept that the restricted internal orientational freedom of the magnetic moment, 

allowing for its small deviations from the selected direction within a particle, should not substantially affect 
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Fig. 1. Schematic of the problem. 

quantitative characteristics and especially the character of the behavior of the system. The investigation carried out 

in the present work completely disproves this concept. 
The problem of the dynamics of a rigid dipole in a rotating volume (in a vortexed flow) of a fluid under 

the effect of the magnetic field normal to the rotation axis (vortex) has [10] low- and high-frequency stationary 

solutions for orientation of the magnetic moment separated by a certain critical rotation frequency of the fluid. In 

the pre-critical range, the particle is at rest, and the magnetic moment lies in the equatorial plane (normal to the 

rotation axis, see Fig. 1) approaching with increasing frequency the meridian plane (the plane that contains the 

rotation axis and is normal to the field). In the post-critical stationary state, the moment is situated in the meridian 

plane to the left or to the right of the equator and approaches the pole (rotation axis) with increasing frequency. 

However, the post-critical stationary state of the rigid dipole is indifferent, and additionally, there are infinitely 

many types of periodic motions corresponding to the set of initial conditions. As has been pointed out in |12 ], the 

absence of magnetic moment attraction regions has fundamental importance for formation of the macroscopic state 

of a system of particles. An arbitrarily small Brownian motion of the particles becomes the governing factor. In the 

present work we show that a minimum orientational freedom of the magnetic moment in the particle body makes 

the high-frequency stationary states globally attractive. The decay time of their perturbations decreases with 

increasing field strength and can become smaller than the characteristic time of the Brownian rotational diffusion. 

This circumstance, as is shown by Brownian dynamics simulations, can radically change the orientational state of 
the ensemble of particles and, thus, high-frequency magnetic and hydrodynamic properties of the suspension. 

1. Orientational Dynamics Equations for a Uniaxial Ferroparticle. We consider a spherical homogeneously 

magnetized grain of a ferromagnetic material having a uniaxial magnetic anisotropy with anisotropy energy density 

K. The grain energy in the external field H = Hh 

U = - m H  (eh) - K v  (en) 2 

determines the effective orienting field (Ha = 2 K v / r n )  

Hef t = - O U / O m  = Hh + H a (en) n .  

Since the mechanical motion of the particle is substantially slower than the solid-state relaxation of the 

magnetic moment, the latter is constantly in equilibrium with the effective field. If in this case the strength of the 

external field is small compared to the strength of the effective field of the magnetic anisotropy of the particle 

= H / H  a < 1/2 [14]), the direction of the magnetic moment is uniquely related to the field direction and one of 

the directions of the easily magnetized axis. With an accuracy up to ~x we find from the condition e = H e f t / H e f t  

that 

e = 2  [1 - 2 ( n h )  l h +  1 - 3 . ( n h ) + ~  (nh) 2 

For the electrodynamic force moment rotating the particle, it follows from (1) that 
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L = m  x H = m H  I - ; t ( n h ) + ~  - [ n x h l .  (2) 

Let the grain considered be suspended in a Newtonian fluid rotat ing at a frequency co 0 .L H.  By neglecting 

inertia, we obtain an equation of motion for a particle by equating to zero the total force moment  including the 

orienting moment L from (2) and  the moment  of viscous friction forces -6vr/(o~ -a~0) .  By using Eq. (2) and 

introducing the time scale t* -- 1/a~* based on the critical synchronism f requency for a rigid dipole 09* -- mH/6vr I 
[10], we write the equation of motion in the following undimensioned form (v = to/M* and v o = to0/~o*): 

v = v  o + @ n  x h ,  ~ =  1 - / l ( n h )  + - ~ 2  - . (3) 

Equation (3) along with the kinematic relationship dn/dT - v x n leads to the following equation of motion for the 

unit vector n (3 is expressed in units of t*): 

dn 
d r -  v ~  [ n x h ] .  (4) 

We also write the relationship 

e x h = r  x h ,  (5) 

valid for every time instant. By introducing Cartes ian coordinates with the X-axis  directed along v o, Y-axis directed 

along h, and Z-axis directed along v 0 x h (see Fig. 1), we write Eq. (5) in the form of a sys tem of equations for 

x, y, and z-components of the vector n: 

.;c= - r  y) xy ,  jp=--VoZ+ dp(2, y)(1 - - y 2 ) ,  j ~ = v 0 Y _ d p ( 2 ,  y) zy .  (6) 

Here  the dot over the letter denotes  the time derivative, and the function @(2, y) is defined by (3) with nh = y. 

2. Sta t ionary Orientat ional  States. At t ract ion Effect  Due to the Small  Orientat ional  F r e e d o m  of  the 

Magnetic Moment.  Equations (6) describe the motion of the end of the vector n on a sphere with unit radius.  In 

the stationary state (Jr = ~ = ~ -- 05 they assume the form 

xy= O, VoZ--dP(,~,y) (1 - -y2)  = 0 ,  y [v O - ~ ( 2 , y )  z] = 0 .  (7) 

As follows from the first of Eqs. (75, the particle axis in the s ta t ionary state can lie in either the equatorial  (x -- 05 

or meridional (y -- 05 plane. The  position on the equator  is character ized by the angle 0 of deviation from the field 

direction. The  deviation increases with frequency according to t}(2, cos 0) sin 0 --v 0. In the critical point where  the 

quantity ~(2 ,  cos 0) sin 0 assumes its maximum value, 0c = n / 2  + ;t + 0 ( 2  2) and v c = 1. It follows from the second 

of Eqs. (7) that two stat ionary states appear on the meridian at frequencies v 0 >__ (Do (~0 -- t} (2, 0)) :  

y = 0  z = ~ 0 / v 0 ,  x =  + ( 1  .,_2, 2.1/2 
, - - q , O / v O )  . 

(8) 

It should be pointed out that  in the case of a finite degree of f reezing,  there  is a na r row f r equency  range  

(1 - 22 /2  < v 0 < 1) within which equatorial and meridional states coexist,  whereas for a rigid dipole (2 - 0) they 

merge in the bifurcation point v o = 1. According to Eq. (6), the partricle axis approaches one  of the two opposite 

rotation directions with increasing frequency. From Eq. (35 and the kinematic relationship dn /dr  -- v x n we find 

that in the stat ionary state the particle is uniformly rotated about the easiest magnetization axis at a rate 

v = sign (1, 0 n) v n ,  v = (v~ - (I)~) 1 / 2  (9) 

Let us consider the stability of s ta t ionary states. The stability of the equatorial state is evident,  and  the 

evolution of a small perturbat ion ~ of the meridional  state no, as can be found from linearized Eqs. (7) and  (8), is 

described by the relationship 
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{1 \ 
~ =  ~0 exp ~ 0  r)  [h cos (Vpr+ ~,)+ sign ( x ) [ n o •  sin (Vp~: + y)]  (10) 

where C0 and  y are constants, ~b' 0 = a /dy at y = o, and Vp = [v02 - ~02 - (~ ' o /2 )2]  1/2. This equation describes 

precession of the particle axis about the position n o at a frequency vp and with an ampli tude variation increment 

�9 '0/2 = - , ; t /2  = - H / 2 H a .  For a rigid dipole (2 -- 0), the state considered is neutral; however, in an actual system 

(2 > 0) it is attractive. Numerical experiments with equations of motion (6) make it possible to conclude that the 

left and right high-frequency equilibrium slates on the meridian are strongly attractive for arbi t rary motions of the 

easiest magnetization axis which start on the corresponding hemisphere. 

3. Algorithm for Description of  the Brownian Rotational Dynamics. The finite-difference algorithm for 

description of the orientational dynamics of Brownian particles is based on computation of elementary rotations of 

particles A T  a (a  being the particle number)  at the time step At as a sum of random.or ienta t ional  displacements 

and displacements under  the effect of regular force moments [15 ]. By using Eq. (3) and  the relationship A T -- 

coAt, we have 

Al~ = w ~  6vr /  n •  A t + 6 1 o  ~. (11) 

Random rotations 6~o~? about the i-th Car tes ian axis are chosen from a Gaussian distr ibution with a zero mean and 

variance 

(~o 2) = 2DrAt, (12) 

where Dr -- k T / 6 v ' q  is the rotational diffusion coefficient. The change in the position of the unit vector of the 

easiest magnetization axis as a result of a small rotation is determined by the kinematic relationship An -- Ago x 

n. By using the above time scale t*, we write the finite-difference model of the orientational dynamics in the form 

(~ = m H / k T )  

a n a a , (13) An a =  Iv o x n  + r  ( n ' ~ h ) ) l A t + ~ , / , ~ •  n 

a a i2) (14a) ~o i = ~ n  i ,  (g - t ,  

For an ensemble of N particles, N normally  distributed numbers R i are obtained from N + 1 numbers c i normally 

distributed on the interval [0, 1 ] according to the relationshhip R i = ~/ - 2  In c i sin 2~ci+ 1. Magnetization of the 

system (in units of saturated magnetization n m )  is calculated by averaging relationship (1) over the ensemble of 

particles 

(el) = (ni) + ;t th  i - (ninj)  h.il - 2t 2 ( n )  hih l + -~ - (ninink) h.ihk) (15) 

To test the algorithm, we calculated the equilibrium magnetization that for any  ~. should vary with the field 

strength according to Langevin's law 

(e) = hL (~), L (~) = ctanh (~) -- 1 /~ .  (16) 

The effect of the number  of particles in the ensemble on the result  of computations virtually vanishes after N = 

500. The direct use of algorithm (14a)-(15) provides convergence to the analytical result (16) only in the range of 

rather strong fields (~ > 5). Convergence in weak fields can be provided by dividing the  Brownian motion on the 

step AT into several (r) successive independent  displacements, which improves statistical properties of sampling. 

Instead of (14a) we use 

a ~]r  (2Ar] r 

~Pi = V ~ ~r ) k=lX (Ra)k  , (14b) 
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Fig. 2. E f fec t  of the ma t r ix  r o t a t i o n  f requency  v o on the d y n am ica l l y  

equil ibrium distribution of ends of unit vectors of the easiest magnetization 

axes of ferroparticles on the surface of a unit sphere in the field ~ - 20 in the 

case of r ig idly  (left panels) and  part ial ly frozen (right panels) magnetic 

moments  in the particle body. v 0 = 0, 0.5, 1, and 5 (from top to bottom). 

a 
where  (R i )k is the k-th sample of the normal distr ibution of random numbers  with (R 2) = 1. With increasing r, 

d ivergence between analyt ical  and  numerical magnet izat ion values decreases and, in addition, convergence  is 

provided with decreasing step length. The dependence  on the step length virtually disappears when the max imum 

of the values of Ar and  2Az /~  becomes smaller than  0.005. For N -- 500, Ar -- 0.001, and ~ -- 0.2, calculated 

magnetizat ion values exceed Langevin's values by 110, 30, 15, and 5~o for r -- 1, l l ,  21, and 25, respectively.  

Coincidence with the analyt ical  results within the limits of 5 ~  for ~ -- 0.2, 1, 5, and 10 is achieved at r = 25, 11, 

3, and  1, respectively (for ~ = 10, the deviation < 1 ~ ) .  

4. Charac ter  of  Part icle  Distribution in the Orientational Space. To provide a pictorial presenta t ion  of the 

charac te r  of the particle distr ibution in lhe orientat ional  space, we present  results of the numerical s imulat ion in 

the form of a distr ibution of points presenting positions of easiest magnetization axes on a unit sphere.  On the 

spherical surface, we in t roduce the coordinates s 1 and  s 2 of the mapping point by placing the origin at the  point of 

intersect ion of the equator  and  meridian and by denot ing by s I the path length along the equator to the  point of 

its intersection with the plane Y -- y and by s 2 the path length from this point to the mapping point a long the 

intersection of the plane Y = y with the sphere. A uniform distribution of mapping points corresponds to a uniform 

orientat ional  distribution of the easiest magnetization axes on the (s 1 , s 2)-plane. Snapshots of easiest magnet iza t ion 

axes (N = 1000) in the state  of dynamic equilibrium are  shown in Fig. 2 for 2 -- 0 (left panels) and 2 = 0.4 (right 

panels) for v 0 -- 0, 0.5, 1, and  5, and ~ ~- 20. Th e  external  curve in Fig. 2 bounds the entire surface of the  sphere,  

whereas  the internal  curve bounds  the surface of the hemisphere z > 0 (see Fig. 1). As is evident, for  the  rigid 

dipole model (2 --- 0),  the  distr ibution is close to axisymmetr ic  and broadens  with increasing frequency. A deviation 

in the behavior of nonrigid dipoles is observed a l ready  at the frequency v 0 --- 1 (the distribution is s t re tched  along 

the meridian)  and it increases with increasing frequency.  At the frequency v 0 = 5, instead of the virtually isotropic 
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Fig. 3. Family of trajectories of motion of the end of the unit vector of the 

magnetic moment of the rigid dipole projected on the meridian plane upon 

rotat ion of the matrix with the frequency v o. 

distribution observed  for rigid dipoles, we have a pronounced biaxial distribution whose character is t ic  directions 

are close to the fluid rotation axis, which corresponds to stationary states (8) for v o -- 5. The reason for  the existence 

of a preferential  direct ion for rigid dipoles at post-critical frequencies is not so straightforward,  but  it can be easily 

unders tood f rom an  analysis of the dynamic  solution for a single particle. According to [10] ,  at  frequencies 

v o > 1, the rigid dipole has an infinite number  of periodic motions. For each of them, the particle rotat ion axis lies 

in the meridian plane and makes the angle ~o in the range of -~o o to +~o 0 with the fluid rotation axis,  and it should 

be noted that  the  bounds of the above range correspond to stationary states of the easiest magnet iza t ion axis and  

arc determined,  according to (8), by the equation sin ~o o = 1/v o. The  end of a unit vector of the easiest  magnetizat ion 

axis describes a circle, and all planes of motion intersect along the line Z = v o, Y -- 0 (see Fig. 3). The  points of 

tangency cor respond to stationary states. As is evident, the trajectories become denser  toward the meridian plane 

the stronger and  the closer the frequency is to unity. We find the stationary distribution of particles over  trajectories 

p(q,) in the following manner .  We assume that  the original orientational distribution is uniform and  that  there are  

no directed part icle flows from one trajectory to another  during the motion. We also take into account  that  the angle 

bclween the plane X -- 0 and the plane of a given trajectory equals -~o. Then the fraction of part icles p(~o)d(~o) in 

lhc interval of trajectories of ~o to ~o + d~o equals the ratio of the sphere surface area between the corresponding 

planes to the ent i re  sphere area. From this we find 

1 1 
p (~o) = ~- v 0 cos (~o), [ sin (~o) [ <- V-o" (I 7) 

The  condensa t i on  of t rajectories  toward  the  cen te r  can be charac te r ized  by the re la t ionsh ip  p(O)/p(~o o) = 
r o ' ~ r  ~ - I) I/2. Upon approaching the bifurcation point (v 0 = 1), this ratio tends to infinity,  and  in the limit 

v o -., Qo it tends to uni ty  (trajectories are  uniformly distributed over the sphere).  In addi t ion,  the  distribution 

of parlicles along the trajectory ~o is also nonuniform. This is connected with the nonuniform charac te r  of motion 

duc Io the decelera t ing  or accelerating effect of the field on portions z > 0 and z < 0, respectively. By introducing 

the anglc 01 of deviat ion of the variable component  of the vector n from the vertical direction upon moving along 

lhc Irajcctory ~o, we, based on (6), obtain the equation for it: 

01 = v  0 c o s ~ o -  (1 - v  0sin 29o) 1/2 s in01 .  

The probability Pl (O])d01 of observing a particle with the angle in the range of 01 to 01 + (t01 equals the ratio of 

the time of its p resence  in this range to the motion period, which is identical for all trajectories and  equals O = 

2 n ( v ~ -  1) -1/2 [10].  Therefore ,  

1 (Vo 2 - 1) 1/2 
(18) 

P l  ( 0 1 )  - -  - -  - -  

O01 2~ (v0 cos ~o - (1 -v2sin2~o)l/2sinO1) 
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The maximum of the quantity p(O l) is achieved on a meridian, and it decreases with increasing frequency. By 

combining results (17) and (18), we conclude that at frequencies v 0 > 1, rigid dipoles have a preferential orientation 

along the positive direction of the Z-axis (i.e., along v 0 x h). The orientation anisotropy increases upon approaching 

the bifurcation point and broadens with increasing frequency, which agrees with the results of the numerical 

simulation presented in Fig. 2. The attracting effect of stationary states is characterized by the decay time of their 

perturbations (see Section 2), which can be presented in the form r s --- zB(8cr/~2), where T B = 3vrl/kT is the 

characteristic time of Brownian rotational diffusion of the particle, and a --- K v / k T  is the ratio of the particle 

anisotropy energy to the energy of the thermal motion. Since the thermal motion prevents orientation of particles, 

the attraction intensity can be characterized by the ratio y -- zB/r s = ~z/8a. By using 2 -- ~/2cr, we also write Y -- 22a/ 
or y = ~ / 4 .  Since the limiting allowed value of 2 equals 0.5, and the limiting field strength ~ = a, the limiting value 

of the attraction parameter ~'rnax = cr/8. For the above-considered system (~ --- 20, 2 = 0.4), the attraction parameter 

y -- 2, and the panicle anisotropy parameter a = 25. According to these concepts, a decrease in 2 and increase in 

by a similar factor should retain the distribution of the easiest magnetization axes. Indeed, calculations for 2 = 0.2, 

= 40 and ;t --- 0.1, ~ -- 80 yielded distributions visually identical to that presented in Fig. 2 for 2 --- 0.4, ~ -- 20. It 

should be noted that the time necessary for establishment of stationary distribution (expressed in units of the 

inverse critical synchronism frequency t*) increases as oc 1/~ with decreasing ;t (at Y --- const) (as does the above- 

calculated perturbation decay time in the stationary state of a "cold" particle). In the case considered (Y = 2) it 
approximately equals ~/2. 

Thus, a small orientational freedom of the magnetic moment in the particle body can have important 

macroscopic consequences. To date, in particular, the phenomenon of the major slowing down of the magnetic 

relaxation rate of a ferrocolloid premagnetized to saturation along its rotation axis has been observed. 

N O T A T I O N  

m and v, magnetic moment and volume of particle; co and v, angular and undimensioned angular velocities 

of particle; n, numerical concentration of particles; r/, viscosity; k, the Boltzmann constant; T, temperature. Indices: 

a, anisotropy; B, Brownian; c, critical; s, solid-state; eff, effective; p, precession; r, rotation. 
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